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Abstract—We propose in this paper a denoising method 

based on the texture roughness appreciation, realized using a 

semi-local estimation of the Hurst exponent. The estimation is 

made in the Dual Tree Complex Wavelet domain, by using 

techniques such as the least squares or the lasso. The Hurst 

exponent is used to correct the energy distribution of the 

wavelet coefficients. This removes the noise in homogeneous 

areas but can oversmooth the edges. In order to overcome this, 

we propose a fusion based approach, based on the observation 

that the noise is less visible on the edges. Both the denoised 

image as well as the original image are weighted by images that 

depend on the Hurst parameter, such that the edges are less 

degraded, and the correction is applied predominantly in the 

homogeneous areas. Our simulation results are promising for 

images containing both smooth areas as well as edges for the 

fusion based approach. 
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I. INTRODUCTION 

Digital images can be affected by noise, which is an 
unwanted component in the image, and thus the quality of 
these images is degraded [1]. The grain noise in 
photographic films is modelled as Gaussian or Poisson. 
Many images are corrupted by salt and pepper noise. Other 
noises are quantization noise and speckle (as for example the 
case of SAR or SONAR images). An important task is 
finding a denoising algorithm, such that it diminishes the 
noise power, while preserving the image features (edges and 
fine details). There are several such algorithms, some 
operating in the spatial domain, while others in the frequency 
domain.  

Our aim is to propose a denoising system for images with 
textural content, based on the Hurst parameter. The Hurst 
estimation is made in the Dual Tree Complex Wavelet 
domain, by using techniques such as the least squares or the 
lasso. The Hurst exponent is used to correct the energy of the 
wavelet coefficients distribution. This removes the noise in 
homogeneous areas, but may result in oversmoothed edges, 
which can be visible to the human eye.  

In this paper, we propose a fusion based approach, based 
on the observation that the noise is less visible on the edges. 
The algorithm will fuse two images: the denoised one and 
the original one. The denoised image is weighted by an 
image dependent on the Hurst estimate, such that the smooth 
areas of the image are denoised. Similarly, the original image 
is weighted by an image dependent on the Hurst estimate, 
such that the edges are less degraded. Thus, the correction is 
applied predominantly in the homogeneous areas and less in 
the edges of the image. Our simulation results are promising 
for images containing both smooth areas as well as edges for 
the fusion based approach. 

The paper is organized as follows: Section 2 presents our 
motivation, Section 3 presents the algorithm proposed, 
Section 4 shows the simulation results, while the last section 
is dedicated to conclusions and future research. 

II. MOTIVATION 

An important feature of an image is the roughness; its 
estimation makes possible various applications, such as 
denoising or segmentation [2-7]. The roughness of a surface 
in a natural image can be estimated by the Hurst exponent, 
because the natural images follow a fractional Brownian 
motion (fBm) model [8]. The wavelet coefficients follow a 
power law, from which the Hurst exponent is obtained by 
using simple least squares, LS [2, 5] or lasso [3-5].  

In Fig. 1, we give an example of a synthetic texture, 
generated by using same statistical model but three different 
values of the Hurst parameter. The area with the largest 
Hurst value (one) is the most homogeneous one, while the 
area with the smallest Hurst value (1/3) is the roughest one. 
It is clear that the Hurst exponent describes 
smoothness/roughness in an image. We notice that in this 
case, there is no predominant direction in the texture, 
meaning it is isotropic [9].  

 
Fig. 1. Synthetic isotropic texture generated using piecewise-varying 
Hurst parameter. 

  
Fig. 2. Texture images from the Brodatz database, characterized by 
different Hurst parameters - sand (1.5.04) vs brick wall (1.5.06). The first 
texture is isotropic while the second one is anisotropic.  

In Fig. 2, there are examples of some real texture images 
from the USC-SIPI database [10], which are isotropic (see 
left image) or anisotropic, with horizontal predominant 
direction of the texture (see right image). In a natural image, 
we may encounter smooth areas as well as edges (such as in 
second image in Fig. 2). The noise is more visible in the 



smooth areas, than it is in the edges. It is important for the 
denoising method to affect the edges as less as possible. 
Hence, our method proposes to apply denoising on the 
smooth areas, by weighing the denoised result with the Hurst 
estimated image. In order to retain the edges, the original 
image is weighted by an image also dependent on the Hurst 
image. The two images are then fused. 

III. PROPOSED METHOD 

In a natural image, we can assume a patches model 
(whereby the Hurst exponent varies in a piecewise constant 
manner) [3], such as in Fig. 1. The Hurst estimation is a 
difficult task, especially when the acquired image is 
perturbed by noise [3]. Several methods have been proposed 
for Hurst estimation in recent years [2-7].  

In this paper, we use the estimation of the Hurst 
parameter in the Dual Tree Complex Wavelet Transform 
(DTCWT) domain, as proposed in [5]. The method can use 
Least squares or lasso. The denoising method consists in the 
estimation of the Hurst exponent in the wavelet domain, 
followed by correction of the wavelet coefficients (to 
improve the distribution of their energy) for the entire image.  

The log-energy of the wavelet coefficients of fBm 
processes is proportional with 2k(H+1): 
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⋅ ∝W , where W  is the wavelet 

transform, m is the subband, k is the level of decomposition, 
and H is the Hurst exponent. The log-energies of the 
coefficients are taken at location i: 
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1β  are estimated on all wavelet decomposition levels, using 

different algorithms: least squares (LS), or generalized least 
absolute shrinkage and selection operator (lasso) to perform 
a spatial regularization, as described in [5]. One can use 

finest k−  to coarsest k+  scale levels, with 1k− =  and 

( )2logk J M+ = = , M*M being the size of the image. It was 

observed that in practice it is better to avoid the highest and 
the lowest resolution levels. Thus, the estimation is made on 

levels  1,..., 1k K J= + −  using LS as well as lasso 

(discarding from the estimation K highest resolution levels 
and the lowest resolution level).  

This is followed by the denoising step on K finest 
resolution levels. To ensure computational speed, we 
downsample the subband images by a factor of 16*16. The 
energy of the wavelet coefficients is then corrected if it’s 
above the estimated value.  

As such, a denoised image is obtained. After 
experiments, it was noted that denoising may result in 
degradation of the edges. Smooth areas are associated with 
large Hurst parameters, while edges are usually associated 
with smaller Hurst parameters. Therefore, we propose a 
fusion of two images, I1 and I2: 

 I1   =  Hn ⋅ D (2) 

 I2   =  (1− Hn)⋅I (3) 

 If   =  I1 + I2 (4) 

where Hn is the normalized Hurst image (to range from 0 to 
1), D represents the denoised image and I the original noisy 
image. The result of the fusion-based denoising method is If. 

It is to be noted that this method assumes the image 
contains both rough patches that have a small value of the 
Hurst parameter, as well as smooth patches, with large values 
of the Hurst parameter. 

IV. SIMULATION RESULTS 

In our simulations, we have used different types of 
images, both synthetic and real images, affected by AWGN 
noise. As for the parameters used, we have performed the 
DTCWT transform on J = 9 levels, for images of size 
512*512, and for the denoising step, we have used K=2 
highest resolution levels. The downsampling step is 16. In all 
experiments, we have considered that the noise affecting the 
image is additive white Gaussian noise, with variance 0.005. 

One experiment is done on a synthetic texture of size 
512*512, with one area homogeneous and isotropic and 
another one with directional edges.  

In Fig. 3, we show this image, together with the Hurst 
exponents estimated by the two of the methods considered: 
LS and Lasso. We observe that the Hurst exponent based on 
Lasso is smoother than the one based on LS. 

In Fig. 4, we show the noisy image, together with the 
Hurst exponents using LS and Lasso estimation.  

In Fig. 5, we present the result of the denoising 
procedure. The denoised images for the synthetic texture 
image are as follows: the denoised image D using the LS 
Hurst based denoising; the fused result If,LS, using Hurst 
exponent estimated by LS, and finally the fused result If,lasso, 
using Hurst exponent estimated by Lasso. 

TABLE I.  RESULTS OBTAINED FOR THE SYNTHETIC IMAGE 

AFFECTED BY AWGN NOISE WITH VARIANCE 0.005, FOR THE PROPOSED 

METHODS 

Method 
Results for synthetic image 

PSNR (dB) SNR (dB) SSIM (%) 

Noisy input image 23.08 16.93 50.86 

LS Hurst based denoising  24.06 17.73 72.56 

Fusion based approach 
(LS) 

26.97 20.73 80.79 

Lasso Hurst based 
denoising 

24.03 17.70 72.45 

Fusion based approach 
(Lasso) 

26.89 20.65 82.23 

 

In Table I, we give the results for the synthetic image, in 
terms of PSNR, SNR and SSIM. The noisy image has a SNR 
of 16.93 dB. The results obtained for the first step (LS/Lasso 
Hurst based denoising) show an increase of almost 1dB for 
the PSNR and SNR values, and over 20% increase for SSIM. 

 



   

Fig. 3. Syntethic texture image, with two areas, of different Hurst parameter values (left area is smooth, while right area contains edges). Left to right: 
original image; Hurst exponent estimated using LS; Hurst exponent estimated using Lasso. 

   

Fig. 4. Syntethic texture image, affected by AWGN noise, with variance 0.005. Left to right: noisy image; Hurst exponent estimated using LS; Hurst 
exponent estimated using Lasso. 

    

Fig. 5. Denoised images for the syntethic texture image. Left to right: the denoised image D using the LS Hurst based denoising; the fused result If,LS, using 
Hurst exponent estimated by LS; the fused result If,lasso, using Hurst exponent estimated by Lasso. 

   

Fig. 6. Difference between the noisy image and the resulting denoised images. Left to right: LS Hurst based denoising; denoising by fusion using Hurst 
exponent estimated by LS; denoising by fusion using Hurst exponent estimated by Lasso. 



The results obtained for the second step (fusion using 
LS/Lasso Hurst) show an increase of almost 4 dB for the 
PSNR and SNR values, and around 30% increase for SSIM. 

In terms of PSNR and SNR, the best results are obtained 
for the fusion method by LS estimated Hurst exponent. In 
terms of SSIM, the best results are obtained for the fusion 
method by Lasso estimated Hurst exponent. 

It is observed from Fig. 5, that the LS Hurst based 
denoising reduces the noise in the homogeneous area, but 
also oversmoothed the area containing edges.  

In the fusion result, the treatment of the edges is greatly 
improved, as observed in Fig. 5. The treatment of the edges 
is observed also from Fig. 6, which shows the difference 
between the noisy image and the resulting denoised images 
for: LS Hurst based denoising; denoising by fusion using 
Hurst exponent estimated by LS; denoising by fusion using 
Hurst exponent estimated by Lasso. In the first case, the 
noise is reduced from the smooth area, but also edges, 
resulting in an oversmoothing of the edges. In the second and 
third case, the noise is reduced predominantly from the 
homogeneous area, and much less in the area containing 
edges. This is also noticed from the PSNR, SNR and SSIM 
values that are the highest, compared to the other methods. 
The fusion result outperforms the result obtained for the first 
step of denoising. Same observations are true for the Lasso 
results. 

In the following, we present the second scenario, a real 
image affected by AWGN noise, same variance of 0.005. We 
chose the Barbara image, due to its diverse content of both 
homogeneous areas as well as edges. 

  
Fig. 7. Barbara image used in the second scenario. Left to right: original; 
noisy version for AWGN noise with variance 0.005.  

The original image and noisy version are shown in Fig. 7. 
In Fig. 8, we present the result of the denoising procedure. 
The denoised images for Barbara are as follows: the 
denoised image D using the LS Hurst-based denoising and 
the fused result If,LS, using Hurst exponent estimated by LS.  

In Table II, we give the results for Barbara image, in 
terms of PSNR, SNR and SSIM. The noisy image has a SNR 
of 17.24 dB. The results obtained for the first step (LS/Lasso 
Hurst based denoising) show an increase of less than 1dB for 
the PSNR/SNR values, and almost 15% increase for SSIM. 

The results obtained for the second step (fusion using 
LS/Lasso Hurst) show an increase of almost 3 dB for the 
PSNR and SNR, and over 16% increase for SSIM. 

The best results are obtained for the fusion method by LS 
estimated Hurst.  

It is observed from Fig. 8, that the LS Hurst based 
denoising reduced the noise in the homogeneous area, but 
also oversmoothed the area containing edges (such as the 
pants and the scarf).  In the fusion result, the treatment of the 
edges is greatly improved.  

This is seen also in Fig. 9, which gives the difference 
between the noisy image and the denoised images for: LS 
Hurst based denoising and denoising by fusion using LS 
Hurst exponent. In the first case, the noise is reduced from 
the smooth area, but also edges, resulting in an 
oversmoothing. In the fusion case, the noise is reduced 
predominantly from the homogeneous areas, and less in the 
edges’ areas. The fusion method outperforms the result 
obtained for the first step of denoising. 

  
Fig. 8. Denoised images for the Barbara image. Left to right: the denoised 
image D using the LS Hurst based denoising; the fused result If,LS, using 
Hurst exponent estimated by LS. 

  

Fig. 9. Difference between the noisy image and the resulting denoised 
images. Left to right: LS Hurst based denoising; denoising by fusion using 
Hurst exponent estimated by LS. 

TABLE II.  RESULTS OBTAINED FOR THE BARBARA IMAGE AFFECTED 

BY AWGN NOISE WITH VARIANCE 0.005, FOR THE PROPOSED METHODS 

Method 
Results for Barbara image 

PSNR (dB) SNR (dB) SSIM (%) 

Noisy input image 23.05 17.24 51.48 

LS Hurst based denoising  23.86 17.90 65.60 

Fusion based approach 
(LS) 

25.81 19.90 67.13 

Lasso Hurst based 
denoising 

23.84 17.89 65.50 

Fusion based approach 
(Lasso) 

25.76 19.86 66.17 

 
In order to test the treatment on the edges, we also 

applied a Canny edge detector for all images: original, noisy, 
denoised and denoised using the fusion methods. Edge 
thresholds are automatically chosen, relative to the highest 
value of the gradient magnitude of the image. The edge maps 
are shown for Barbara image in Fig. 10.  



 

 

 
Fig. 10. Edge maps for Barbara image, using Canny detector. From left to 
right, top to bottom, we show the edge maps for: original image; noisy 
image; LS Hurst based denoised image; fusion based approach denoised 
image with LS; Lasso Hurst based denoised image; fusion based approach 
denoised image with Lasso. 

TABLE III.  EDGE TREATMENT RESULTS FOR CANNY EDGE DETECTOR 

Image/Method 
Edges (%) 

Synthetic image Barbara 

Original image 10.4351 10.2592 

Noisy image 10.9428 15.1299 

LS denoising  8.0746 9.0157 

LS fusion denoising 10.0315 10.0105 

Lasso denoising 8.0635 9.0340 

Lasso fusion denoising 10.1925 10.5022 

 

The percentage of pixels detected as edges are given in 
Table III, for both test images. Analyzing Fig. 10 and Table 
III, we see that due to the noise, the number of edges 
increases, compared to the original image (more in the 
Barbara case than in the synthetic image case, see Table III). 
This decreases after denoising, as expected, and it increases 
after the fusion step. In fact, after denoising, it decreases 
below the original image edge percentage, as a consequence 
of oversmoothing. The fusion will bring the value closer to 
the original image. The Lasso fusion based method increases 
the number of edges more than the LS fusion based method. 

 

 

 

 
Fig. 11. Difference edge maps for Barbara. The difference is between the 
denoised image edge map and the original image edge map, respectively. 
From top to bottom: LS Hurst based denoised image; fusion based 
approach denoised image with LS; Lasso Hurst based denoised image; 
fusion based approach denoised image with Lasso. 



 We checked also the errors introduced by the denoising 
method, for example if a false edge appears after the 
denoising (false positive), or if an edge is no longer detected 
(false negative). Again, we present the edges difference map 
for the Barbara image, in Fig. 11. The difference maps have 
0 values shown in pink (no errors), 1 values (corresponding 
to a pixel of a false edge/false positive, shown in yellow) and 
-1 values (a pixel of an undetected edge/false negative, 
shown in purple). We notice in Fig. 11 by checking the 
purple lines (-1 values) what texture pixels have been 
“erased” by the denoising method. For example, the areas of 
the pants or scarf have less values of -1 for the fusion based 
method, which is consistent with our previous results. 

The errors are given in Table IV for both images 
(minimum values are shown in bold). In both cases, the 
fusion step will decrease the errors. The LS fusion produces 
less false positives, while the Lasso fusion produces less 
false negatives. 

TABLE IV.  EDGE TREATMENT ERRORS FOR CANNY EDGE DETECTOR 

Method 

Errors (%)  

Synthetic image Barbara 

false 

positive 

false 

negative 

false 

positive 

false 

negative 

LS Hurst based 
denoising  

4.2599  6.6204 4.3327  5.5763 

Fusion based 
approach (LS) 

2.3518  2.7554 4.0295  4.2782 

Lasso Hurst based 
denoising 

4.2603  6.6319 4.3892  5.6145 

Fusion based 
approach (Lasso) 

2.4052  2.6478 4.2564  4.0134 

V. CONCLUSIONS 

In this paper, we have proposed a denoising method 
based on the texture roughness appreciation, realized using a 
semi-local estimation of the Hurst exponent based on [5]. 
The Hurst exponent estimation is made in the Dual Tree 
Complex Wavelet domain, by using techniques such as the 
least squares or the lasso. The Hurst exponent is used to 
correct the distribution of the energy of the wavelet 
coefficients. This removes the noise in homogeneous areas, 
but can oversmooth the edges.  

In order to overcome this, we propose a fusion-based 
approach, based on the observation that the noise is less 
visible on the edges. Both the denoised image as well as the 
original image are weighted by images that depend on the 
Hurst parameter, such that the edges are less degraded, and 
the correction is applied predominantly in the homogeneous 
areas. Our simulation results are promising for images 
containing both smooth areas, as well as edges for the fusion 
based approach. Our tests, made on both synthetic images as 
well as real images, affected by AWGN noise, show an 

improvement of PSNR, SNR, SSIM and the edges areas 
treatment when applying the fusion based method. Similar 
with other complex wavelets based denoising methods [12], 
the proposed method has the capacity to reduce the 
oversmoothing effect of the edges, in comparison with state 
of the art denoising methods, as for example the BM3D 
algorithm [13]. 

Future research directions are the improvement of the 
denoising method and extending it to satellite or sonar 
images, as in [6], as well as a comparison with other edge 
preserving filters, such as the bilateral filter [14]. 
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